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In this paper we prove the existence of global shift operators .S associated with any fiber
bundle 7 : £ — M, and we discuss the use of these operators in the higher order calculus
of variations. We use a recent formulation of the variational theory which combines shift
operators together with another fundamental operator, called the omega operator, to describe
the major aspects of the higher order theory: in particular the Euler operator and the various
Cartan operators. This approach provides, we believe, a simple and direct treatment of the
subject.
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1. Introduction

While many of the problems connected with formulating the variational the-
ory for higher orders were resolved some years ago, there has been continued
interest in simplifying the constructions involved and understanding the basic
mechanisms at work. In this vein we recently advocated [Be91] an approach
which requires just a minimum number of fundamental objects for formulating
the theory: basically just the omega operator £2 and shift operators.S. Here in this
paper we prove the existence of global shift operators .S, which were previously
introduced in a purely axiomatic fashion, and we describe additional features of
our approach which follow easily from the axioms and which give some of the
well-known results in the literature.

In essence the omega operator £ allows one to describe the Cartan forms
and write the variational equations in terms of Cartan forms in a convenient
way. In conjunction with £, the choice of a shift operator S gives an axiomatic

1 betounes@usmcpé.bitnet

0393-0440/93/$ 06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved



186 David Betounes / Global shift operators

construction of the Euler operator: £ = £5 (which does not depend on the S
chosen) and the various Cartan operators: Cg (which in general do depend on
S, but only up to a trivial operator). Specifically for a kth order variational
problem, these operators are defined in terms of S by

E = (1 + QdS)HK, (1)
Cs = (1 + SQd)*, (2)

il

where d is the exterior derivative. The omega operator is closely related to the
horizontalization operator, which has been widely used in the literature, while
shift operators, in a certain sense, provide a global mechanism for integration
by parts, and by iteration yield the Euler operator as i (1). The construc-
tions in (1), (2) rely on the use of certain vector-valued forms on the various
jet spaces: n* : EK = JXE — M of E, which are related to those used by
Kolar [Ko84a,Ko84b] and Ferraris and Francaviglia [FF84] (among others)
for similar purposes. In our case, we consider the space of contact-horizontal
forms: CH"EK+! C A'EF+1 @ APEK+1 consisting of the contact one-forms on
E*+1 which are n,’j+ L_horizontal and which have values in the bundle of 7% +!-
horizontal n-forms on EX+! (here n = dim M). The diagram in fig. 1 illustrates
the overall construction with the domains and codomains of S, 2, £, and Cs.
Clearly each of the small squares in the diagram is commutative, and thus one
has
EQd = QdCs. (3)

This equation can be taken as the fundamental defining relation for a kth order
Cartan operator C in general: £Qd = QdC, with C : N"EX — APE*,

These constructions naturally express the intrinsic variational aspects of the
theory. Thus suppose 4 is an n-form on EX and let 4;(0) = fM gk*} be the
corresponding action integral, where ¢ : M — E is a section (g € ['E), and
ok : M — E* its k-jet. Then the global variational equations (Euler-Lagrange
equations) are

okt eQdi = 0, (4)
or, in terms of the Cartan form CgA for A,
o¥+1*Qdcgh = 0. (3)

In certain cases these equations reduce to ones of order less than 2k + 1, since,
depending on the nature of A, both £2d4 and CsA may be pullbacks of forms
on lower order jet bundles. (The operators denoted by 1 in the diagram in fig.
I are shorthand for pullbacks by the various projections: 7f +!,... , 22%*! and
the shift operator vanishes on rank zero forms.)

The above is a brief outline of the approach to the variational theory devel-
oped in ref. [Be91] (we provide additional details in section 2). This technique

of constructing global Cartan forms via shift operators provides an alternative
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Fig. 1. The overall construction with the domains and codomains of S, Q, &, and Cs.

to other techniques in the literature. These techniques include the use of (1)
partitions of unity by Krupka [Kr84,Kr87], (2) connections on the base space
by Kolar [Ko 84a,b] and Anderson [A89], (3) pairs of connections by Munoz
Masqué [MMS85], (4) fibered connections by Ferraris [F84], (5) reduction to
first order by Saunders [S89], and (6) ideas from exterior differential systems
by Gotay [G91a,G91b]. Some of the earlier work on the resolution of the higher
order Cartan form problem includes refs. [FF83,GM83 HK83,Kr83] (see ref-
erences therein for the prior history of this). We believe our approach here is
simpler, more natural and direct, but in any regard, certainly derivative of and
founded upon these earlier works in the literature.
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In section 3 we discuss shift operators axiomatically and in general, while in
section 4 we specialize to what we call basic shift operators. In the latter case it is
easy to show that for order £ = 1, or for dim M = 1, the corresponding Cartan
operator is unique: Cs = Cs/, for any two basic shift operators S, S’. In section
5 we show, in general, that a global (basic) shift operator S can be constructed
using a torsion-free connection V on M (as well as a volume form w on M ).
For dim M = 1 only the volume form is required, for k = 1 the shift operator
S does not depend on V, and for k = 2 the corresponding Cartan operator Cg
does not depend on V.

2. Background and definitions

For the sake of completeness we include here some of the discussion and
definitions from ref. [Be91].

Throughout the sequel n = dim M is the dimension of the base space, which
we assume is oriented by a volume form z. On a given coordinate chart we let
(w ) denote the local function on M given by

(W) (x) = W (B)OX|xs-..,0/0Xp]x).
Thus locally w = (w)dxdxy---dx,.

2.1. CONTACT HORIZONTAL FORMS

In the sequel it will be convenient to phrase certain constructions in terms
of n-form-valued one-forms on jet bundles (cf. refs. [FF84,Ko84a,Ko84b], as
mentioned in the introduction). Thus let A'EX+! @ 47"E*+! denote the bun-
dle of one-forms on EX*! with values in the n-form bundle A”EXt! and let
CH"E*+! C 4'Ek+1 @ 4"E*+! be the subbundle with elements (u, ¢,), u €
E**+! and ¢, satisfying:

o (X )(Z), ..., Z)) =0, (6)
whenever (i) one of the Z;’s is n¥+!-vertical (dn**+!|,Z} = 0) or (ii) X, is
Ak *! vertical, or (iii) X, = do*+!|,Yy for some section ¢ with 6%+!(x) =

uand Y, € T M. Thus a section ¢ : EX+1 — CH"E*+! of this subbundle,
¢ € CH"E*+! s just a contact one-form with values in the horizontal n-forms

and which also vanishes, ¢,(X,) = 0, on n’,ﬁ“—vertical vectors X,. In local
coordinates ¢ has the expression:
k
¢ = dhwied, (7)

|a] =0

where wi = dyi — vi, . dx; are the basic contact one-forms on Ek+1 4 =
dxidx;---dx,, and ¢* = ¢(8/0y2)(d/08x,,...,0/9x,). Our notation here
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(and throughout the sequel) is as follows: {x;}}_,, {yg}l":l i’(')‘ """" '" «4+1 denote co-
ordinate functions on a fibered chart of EX+! with m = the dimension of the
fiber of E. Also a = (ay,...,a,) € N} is a multi-index, o] = a; + --- + ap,
ande; = (0,...,1,...,0) is the multi-index with jth entry 1 and zeros elsewhere.
We also use implied summation on repeated indices, with the one exception
that summation over a range of orders of multi-indices, like El“a‘ _o in the above
expression, is explicitly indicated.

The rank rk(¢) of a contact horizontal form ¢ is the least of all the integers
re {0,1,...,k} forwhich ¢, (X,) = 0, Vuand VX, € V,nk+! (the n¥+!-vertical
vectors). Thus if ¢ has rank 7, then locally ¢ = 37}, _o ¢hwi ® 4.

2.2. THE OMEGA OPERATOR

The omega operator is the operator  : A"+!EXK — CH"E*+! (one for each
k =1,2,..), defined by
Q) (X )(Zy, -, Z7)
= ¥ (drkt Xy, dok | dn*+ 1, Z), . . da® | drk 1,20, (8)
where u = [o]k*! and z = nf*!(u). Some of the properties of Q are: (1)
If X’ is a vector field on EX+! which projects to X on E¥ then Q (¥) (X’) =
hor (X _ %), where hor is the horizontalization operator (cf., e.g., ref. [Kr83],

p. 199) and _I denotes contraction (the interior operator). (2) Locally on a jet
chart Q (¥) i1s given by

k
Q¥)= > Pl 4,
|a|=0

where

QA(P) = Q(¥)(8/8Y)(8/0x1,...,0/0x,)

hor(8/0y2 W) (0/8x1,....8/xn)

are the components.

The omega operator demarcates the set of Cartan forms on E¥: these are the
n-forms C on E* such that 24 C has rank zero. (In the literature these forms are
usually called Lepagean forms, as suggested by Krupka [Kr73], due to Lepage’s
work [Le36].) In particular, an n-form 7 on E* such that Qdz = 0 is called
a trivial form. If A € A"E¥ is an n-form, then a Cartan form for A is a Cartan
form C such that QdC = £QdA. Thus the set of Cartan forms for A on EX is
{Co + 1|1 € ker 2d} where Cj is any particular Cartan form for A. For a Cartan

form C on E*, the variational equations (Euler-Lagrange equations) are simply
okt QdC = 0.
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Generally the variational problem of interest begins with a Lagrangian form
4 = Lw on E* determined by an appropriate Lagrangian L : EX — R. In this
case the local expression for 2d4 is:
oL
oys

k
Qdi= Y (w);—wle4, (9)

la|=0

and the variational equations are locally given by:

k o .
ZH)'“(%) [(w)ﬁ}faoak]= @=1,...m). (10

la] =0 a

This is expressed globally by using either the Euler operator: 02X +*£Qd A = 0, or
a Cartan operator: a2 +1*QdCJ = 0 (next section). The nature of the pullbacks
for these vector-valued forms is explained in ref. [Be91].

3. Shift operators in general

To define the Euler operator and various Cartan operators we use the notion
of shift operators.

Definition. A shift operator is a mapping
S:CH'EF+! — A"EK+]

(one for each k = 1,2,...), with the following property: for each ¢ € CH"Ek+!

(1)ifrk¢ = 0, then S¢ = 0O;

(2)ifrk¢ > 1, then rk(¢ + 2dS¢) <rk¢ — 1.
In (2) we identify, notationally, ¢ with its pullback n,’jif*d), and we will generally
write ¢ + QdS¢ = (1 + 2dS)¢. The associated Euler and Cartan operators are
defined by £5¢ = (1 + 2dS)*¢ and CsA = (1 + SQd)¥A. It has been shown
[Be91] that the Euler operator does not depend on § (that is, £ = £y, for any
two shift operators S,S’), and the the local expression for £ is

k
£p = (Z (—1)‘“‘D"¢g>w”®A. (11)

] =0
Here D* = D{"D3?--- Dy", where D; is a local differential operator

2k
a 2 o
D; = 5x—l + \Z_:oyaﬂ)‘:d_yz‘
The existence of an operator £ with property (11) does not really rely on the
existence of global shift operators (local shift opertors suffice for the existence
proof, or other methods from the literature can be used).
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The Cartan operator Cs/ = (1 +.S5Qd )% is more easily computed by iteration:
let

po = ¢ = QdA4,
¢ = (1 +Q2dS)¢,
¢ = (1 + 2dS)¢,

(1 + QdS)¢k_2.

Gr—1
Then
Csh=A+Sp+ S+ -+ + Syt (12)

It should be noted that, depending on the rank of ¢ = Qd4, the Euler and
Cartan forms: £Q2d7 and CsA may reside on lower order jet bundles (i.e., be
pullbacks of forms on lower order jet bundles). Thus if ¢ = £2dA has rank
r, then ¢, = (1 + 2dS)"¢ has rank 0 and so ¢,,s = (1 + QdS)Y ¢, = ¢,
(more precisely = n’,ﬁiiif“*(b,), fors = 1,2,....k —r. Thus £2d2 and Csd =
A+ Sé+ -+ S¢,_; are pullbacks of forms on EX+!+7 and E¥+’. In addition
when A = Lw is a Lagrangian form it is easy to see from (11) that £Q2d4 resides
on E% (at most), and for the special types of shift operators discussed in the

next section one has that CgA resides on £2=! (at most).

4. Basic shift operators

In this section we restrict attention to a special class of shift operators, called
basic shift operators, and their corresponding basic Cartan operators. Before
doing this, however, we make the following observations about the general case.

(1) The set of shift operators is convex.

(2) Any two Cartan operators differ by a trivial operator, i.e., if Cy, C, satisfy
QdC, = £Qd = QdC,, then C, —C; is a trivial operator (has values in ker 24 ).
In particular, for any two shift operators .S, S’

Cs =Cs + T,

where 7 is a trivial operator.

(3)If S is a shift operator and T is a trivial operator (T : CH"E*+! —
ker2d, k = 1,2,...), then § + T is a shift operator, and Cs.74 = Cs(1) +
T(@p)+ -+ T(dx_1). Here ¢ = Qdland ¢, = (1 + QdS) ¢.

(4) If C is any Cartan form for A € A"EX, then C = CsA for some shift
operator S. To see this let S’ be any shift operator. Then 7= C — Cg:d € A\"E*
is a trivial form, and defining T(¢) = t for ¢ € CH"E?* and T(¢) = O
otherwise, gives a trivial operator. Then Cs: ;. 7(4) = Csd + 7 = C.
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Definition. A shift operator is called basic if for every ¢ € CH"E*+1:
(a) S¢ is one-contact (i.e., S¢ is a contact n-form on E¥+! such that
W _1Z_18¢ = 0 for any two n¥*!-vertical vector fields W, Z).
(b) S¢ is nfkgl_l-horizontal.
On each jet chart, a basic shift operator S has the local expression, for ¢ €
CHMEx+1;
k-1
Sp = S (p)wid, (13)
|| =0
where -
4; = 6/8)(,-_141 = (—1)’+ldx1 . ~dx,---~dxn,
and the components of .S are given by

52,(¢) = (=1)'*'(S¢)(8/9y2,Dy,..., Dy, ... Dn). (14)
The expression (13) is the general local expression for S, but for any particular
¢, condition (b) gives that the summation in (13) need only extend to |a| =
tk¢ — 1, since $?,(¢) = 0, for |a| = rk¢, ...,k — 1. The Cartan operator Cs for
a basic shift operator has the local expression:

k—1 fk—1-ja]
Csh=A+ Y, ( > Sgi(qs,)) wid;, (15)

ja|=0 r=0

where as usual we put: ¢, = (1 + 2dS) ¢, with ¢ = Qd 1.

For basic shift operators the condition that ¢ + £2dS¢ have rank at least one
less than that of ¢ is analyzed locally as follows.

First for rk¢ = 1, one has S¢ = S§,(¢)w?4;, and

¢+ QdSe = [¢° — DiS§(P) ] w* @4 + [¢? — S8 (9)] 0l @ 4. (16)

For this to be rank 0, one must have: S§;(¢) = ¢¢, which shows that the action
on rank 1 forms, and thus on CH"E!, is the same for all basic shift operators. In
addition, for 4 € A"E!', the Cartan form is CsA = 2 + S¢ = 4 + ¢w?4,.

Next for rk ¢ > 2, a short computation gives the local expression:

¢+ QdSé = (¢* — DiSg (9)) w* @ 4

k—1
+ 3 ( Y Sz,-(¢>)—D,-Sg,-<¢>) wied (17)

o] =1 Htei=a

+ 3 <¢Z - > Szi(as)) Wi ® 4.
lo|=k utei=a
In the formula, the summations ptei=a stand for the summation over all pairs

(u, i) such that g +e; = a. Also note that, since S%. (¢) = 0 whenever |a] > rk ¢,

i
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one can reduce the outer summations in formula (17) to ones with k replaced by
rk ¢. Thus to satisfy the rank condition on shift operators one must have locally:

3 S4() = ¢, (18)
ptei=a
foreach o with || = rk ¢. There are a number of natural candidates for /oca/ shift
operators which satisfy condition (18), but the problem is to obtain a global one
satisfying the condition. In the next section we give a relatively straightforward
construction of a global basic shift operator .S such that on each jet chart:

ﬂi+1 a

Sﬁl(¢) = W u+e; (19)

for |u| =tk — 1 (and tk¢o > 1).
For the case of rk¢ = 2, condition (18) says that any basic shift operator
satisfies:

SEi(d) + SE(8) = ¢, (i), (20)
Sej ($) = ¢4 . (1)

From this, and the action of .S on rank ones, it is easy to see that for A € A"E?Z,
the expression for CsA = A + S¢ + S¢; is locally given by:

Csh = A+ (¢¢ — D;SZ(9)) @°4i + S¢,(¢) w54, (22)

For the shift operator we construct in the next section, which uses a connection
V on M, one sees from (19) that

O + 1
ngi((p) = W ¢Zi+e]’

when | < rk ¢ < 2. Thus the corresponding second order basic Cartan operator
has local expression:

o + 1
Csi = A+ (¢? - ke Dj¢z,-+e,-) w4, (23)
oi; + 1
+ Y ¢‘elj+€, w?Ai'

k7~

Thus CsA does not depend on the connection V used in defining S. This result
together with the assertions in the following theorem have occurred often in the
literature in various forms and have been derived by different methods (cf., e.g.,
refs. [F84,GM83,G91a,Ko84a,Kr83,MM85,589]). By our method, the results
in theorem 1 are derived by just using local shift operators.
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Theorem 1.

(1) Suppose » € N"E¥+1 js any nform and C € N"E* js a Cartan form for A
such that C — A is one-contact and nk \-horizontal (i.e. C is a basic Cartan form
for A). Then on each chart the local expression for C is:

k—1 k—1—|a|
C=i+ Y ( ST o MEDPg gL+ T8 ) w84, (24)

lal=0 \ [B|=0
Here ¢ = Qd24, and the constants Mfl- are:

of!| B[t (e + B + ei)!
a!lf(jal + 18]+ DY

while the ©2.’s are the components of a trivial form on E**.

(2) For base dimension n = 1, or for order k = 1, any trivial form on E**,
which is one-contact and nkk -horizontal, is identically zero. Consequently in
either of these cases there is at most one basic Cartan form C for each A, and in
addition Cs = Cg for any two basic shift operators S, S'. Forn = 1 the expression
(24) reduces to:

ME = (—1)IAl

ol

(25)

«

—1)ﬂDﬁ¢ﬁ+ﬂ+l>wﬁ. (26)

_l+z<k§l:

Proof.
(1) To get the local expression (24) for C on a chart, define a /ocal basic shift
operator S on this chart by:
k-1

S (o + ¢)! e
$0= 2 Gy by i e

The computation of Cg/l is particularly easy since S has the property that
ZMM:Q 5;1,- (¢) = ¢4, for every a # 0. Thus formula (17) simplifies to:

b1 = ¢ + QdS¢
k—1
= (¢ - DiSL(PN w' w4 — Y DiSH(¢) wiz 4 (28)
laj=1
= (a+e)
= (¢ "Did)i)w ®4 — l;]ml—rl—)‘ 1¢a+e,wa®A'

From this one obtains:

k-2
T (o + e +¢))!
$01= =3 Sl Dol £2)

lal=0

Dj¢a+e,+ej wid;. (29)
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Continuing with this iterative calculation: ¢; = ¢ + Qa’Sqﬁl, S’(bz, .. , ONE
arrives at the /ocally defined Cartan form constructed from S:
k=1 [k=1-|a|
Ch=A+ Y. MEDEYE 4., | w4 (30)
la]=0 \ [B]=0

Now since any two Cartan forms for A (local or global) differ by a trivial form,
one has in particular:

C=C§i+r, (31)

where 7 is a local trivial form on E%¢. Since both C and C34 are basic, T necessarily
has the expression: T = Z\kjio 1%,wi4;. Thus formula (31) is the same as (24).

(2) Suppose T € A"E?* is one-contact and n7* |-horizontal. Locally 7 =
Yo 14034, and is trivial (2dt = 0) if and only if

Difgi = O,
Dité + > 14 =0 (0<lal <k), (32)
ntei=a
Y 4 =0 (lof = k).
utei=a

Thus for n = 1, or for k = 1, any such trivial form is identically zero. But
then from formula (24), one sees that any two basic Cartan forms C, C’ for A
coincide locally with Cg/l, and thus C = C'. ]

Definition. The local shift operator S defined by formula (27) in the above proof
is called the canonical local shift operator. This operator is purely local (does
not globalize in general), but is useful in computing the local expression (24)
for any basic Cartan form for A.

There are other candidates for local shift operators for which CsA is easily
computed, for instance:

k—1
C A — 1 a af.
S¢ = ;ON(Q T o) Yate wadi, (33)

where N () denotes the number of non-zero components of 5. However, the
use of .S gives formula (24), which coincides with the formula given by Munoz
Masqué [MM85] [when specialized to the Lagrangian case: 4 = Lz, so that
¢4 = (w)OL/Ays]. Other versions of Cartan forms from the literature can be
obtained in a similiar fashion (the differences lying in the trivial form 7). One
anomaly occurs here. For the global shift operator S we construct in the next
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section, the local computation of CsA is exceedingly difficult (even for n = 1),
and so it is perhaps best to be satisfied with knowing:

Cs/l = Cgl + T, (34)

in terms of the canonical local shift operator S and some local trivial form t
[which vanishes forn = 1 (and &k = 1)].

5. Existence of global shift operators

In this section we prove the existence of global shift operators for any fiber
bundle 7 : £ — M, by constructing a specific one which is basic and which
satisfies condition (19) on each jet chart. The construction involves an operator
B(¢, g) which is similar to the Saunders operator S, (cf. ref. [S89], p. 235).
We do not use his operator here, but rather proceed along a slightly different
route.

Thus let y be the canonical contact structure on EX*!, i.e., for a vector field
Z on EX+1, y(Z) is the n¥+!-vertical vector field along 7¥*! defined by (cf.
ref. [S89], p. 215):

Y(Z)u = drftYuZy — do¥|dn** ), Z,, (35)

where u = [o]X+! and x = n¥+!(u). Thus locally one has:

k
P(Z)y =Y Wi(Z)y D)0V, (36)
|al=0
where z = mf 1 (u).
As before, let @ be a volume form on M, and identify @ with is pullback
nk+1*gz . For an n-form 0, € A"EK+! let
0, — 0,(0/0x11ys .0y 0/0Xn|u)
T @, (8]0 |y 3]0 Xnlu)
Here x,, ..., x, are coordinate functions on M (lifted to EX+1), and the definition
does not depend on the choice of coordinates.

Theorem 2. Suppose ¢ € CH"E*+! and g € C*M. Let B(¢, g) denote the con-
tact one-form on EX+! defined by: for u € E¥*! and Z, € T,E*+!

B($,8)u(Z) = +¢u ((87),""), (37)
where Y is a vertical vector field on E such that
P(Z)u = Y (38)

(here Y**! denotes the prolongation of Y to EX*! ), and g = g — g(x), with
x = nk+Y(u) (we identify g with its pullback to E).
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The definition of B(¢, g) in (37) does not depend on the Y chosen to satisfy
(38). Furthermore on any jet chart one has the local expression:
k-1

B(¢,g) = > Bl g)ws, (39)

Ja| =0

where
kil (a + B8+ ei)
a — a B+e

B8 = 3 Ngrertmy 000 e 40
Here (3) = o!/[v!(a—v)!] and N (a) = the number of non-zero components of
a = (ay,...,a). Notealso that in (40) there is implied summationoni = 1,...,n,

and in (39) and (40) one can replace k by rk ¢.

Proof. First, it is clear that for a given point u € EX+! there is a vertical vector
field Y on E such that YX+! = y(Z),. To see this, note that on a given chart
about u, the requirement is: D°Y? = w%(Z),, fora = 1,...,m (where D* =
D}'D3?--- Dyr). On the chart one can construct such a Y which is constant on
the fibers [so that D*Y? = (§/9x)*Y*?], and then extend this to all of E.

Next, in order to see that the definition (37) does not depend on the Y so
chosen, look at the local expression for (gY)**! on a chart about u, and use
Leibnitz’s rule to get:

(FY)EH! = [% Dr(gye) 2 J

a

[ul=0 ay/‘

k+1 k+1-|a
_ I:Z Z (a+I/)Dy§DaYa82 J (41)

jal=0 tv|=0 a Yayvly

k  sk—l|a| (a th+ 6’,—) 8

—l o +e; )

= Z(Z W(a—x) 4 )wZ(Z)uF

la|=0 \|8|=0 ! X YVatpte|,

The above expression (41) shows that ( ng)’,j*‘ does not depend on the choice
of Y. Furthermore by evaluating ¢, ((2Y )%+!), using expression (41) and the
fact that ¢, 4., = 0O, for |a| + |B| = k, one arrives at the local coordinate
expression (39}, (40) for B(¢, g). O

Remark. The Saunders operator S, (cf. ref. [S89], p. 235) is essentially given
by the expression in €q. (41).

The theorem shows that B (¢, g),(Z,) only depends on the k-jet g (x) of
g at x = n¥+1(u) (where g is considered as a section g : M — M x R.) To
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construct a shift operator out of this, it is natural to look at something of the
form:

B(¢, g% 4z, (42)

where (Z),...,Z» 1) — g4 2" € C*M is a multilinear selection of a func-
tion on M. It is not clear whether there is a natural multilinear selection to use,
or whether such a selection yields a smooth tensor field on Ef+!, defined via
eq. (42). In addition to achieve a shift operator out of such a construction the
la] = rk¢— 1 components of B (¢, g) should have a specific form. The following
theorem shows one way to construct S¢ out of B(¢, g), somewhat along these
lines.

Theorem 3. There exists a global basic shift operator, constructed as follows: Let
n=dmM.
(1) For n = 1, define S¢ by:

(SP)u(Zy) = =—B(¢, g)u(Zy), (43)

k ¢
where u € EX+' Z, € T,E**+', and g is a function on M, which on a neighbor-
hood of x = n**1(u) satisfies:

dg:w. (44)

The definition does not depend on the choice of g, and the components of S¢ are
smooth functions on E¥+1:

<a+ﬂ+1

—1-
Sa(¢) a+ 1 a+1 Z

Cﬂ+l(w)¢g+ﬁ’+1a (45)

kla

fora =0,1,...,k — 1, and by convention the summation Z is absent when

a =k — 1. In formula (45)

Cpni (@) = =5 @/d0) @) (@)(x) = w,(d/dxl).

(2) For n > 2, define S¢ as follows. Let ¥V be a torsion-free connection on M.
For a multilinear form 6 on a vector space, let #8 denote the symmetrization of
0. Foru e E¥*' and Z}, ..., Z]' € T,E**", choose a function

g = gZ A
on M which satisfies:
ng"l'”Z:_llx (_l)n—l(Z;#lJ --~JZ;JG7X), (46)

#vrdgZZiT |, = 0, (47)
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forp = 1,...,k. Here Zi = dn"“l,,Zl{ and V? = VoVo. -0V denotes the
application of the covariant derivative p times. Then

B(g, g% %)z (48)

does not depend on the choice of g satisfying eqs.(46), (47), and the antisym-
metrization of this expression gives a basic shift operator:

(S)u(Zy, . Z]) = n,z(rk¢ B(g, g% H" "y (zmm), (49)

with local expression on each jet chart given by S¢ = Zla\ 0Se(P)wid;. The
components of this basic shift operator are:

a+ f+e
. 1 k—1—|a|
aj+ a o

rqu ate; T WZ:O WT) /3+e

(50)

5% (¢) = (,V)¢"

a+f+e;’
k—
1 Il jg absent when

o] = k- 1. These components are smooth functions on E"+1 with C ﬂ+e (@, V)
depending on w and the derivatives of the connection components in general.

Jor la| = 0, ...,k — 1, and by convention the summation 3~ 5_

Proof.

(1) This part follows from theorem 2.

(2) First note that for a given u € E¥*! and Z}, ..., Z}!, eqs. (46), (47)
constitute an intrinsic way of specifying the k-jet of ¢ = g — g(x) at x. Thus
any two functions g, g which satisfy these equations give the same B operator:
B(¢,g)y = B(¢,2), at u. Further, the multilinear dependence on Z/, ..., Z~!
of any solution is clear from the form of the equations . Thus it suffices to look
at these equations locally and exhibit a local solution. Equation (46) is

0g/oxilx = (—1)" L (Z), .., ZF 1,0 /0x]x) (51)

and eqs. (47) for p = 1, ..., k, recursively specify the higher order derivatives of
g at x in terms of 9 g (x) /8 x, and the derivatives of the connection components.
Namely, by looking at

d%g og

- 1=, (52)

(Vdg)y = Ix;0x; Yox,

0 92 19
(V2dg)e = (*? - 28
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etc., one sees that g satisfies eqs. (47) if and only if

8 0% | _ a° r 08
OXe, - OXe, 0X; 0X; i - #axq Oxg Fijaxr x (54)
= P'(I')0g/0xlx, (55)

foreach s = 1,2,...,k — 1. Here the # indicates symmetrization of the indices
Cl, .. Csy 1, j, and P"(I") is a certain polynomial depending on I” and its deriva-
tives up to order s. This polynomial results from eq. (54) by applying Leibnitz’
rule there and recursion to eliminate all but the first order derivatives of g.

All of this shows that the expression

B(¢, g% Z7y, (Z) (56)

does not depend on the choice of g, and is multilinear in Z}, ..., Z/ (with actual
dependence only on the projections of these to T, M).

The antisymmetrization of (56) (divided by rk¢), gives an n-form S¢ on
EX+1 which is clearly one-contact and 7 *!-horizontal. To see that it is a shift

operator we compute Szj(¢) for |u| = k¢ - 1:

5% (),

(—1)+1 () (8/0¥81u, D1 () - Dy () - Dy (1))

= (—1)j+1B(¢>, ng(u)~--5;(u)...D,.(u) )u(a/aymu)/ k¢

i+l i + 1 Dy (u)-- D (u)--Dy (1) "
b Z (w)(x)ax,g lxPute, (U)/ Tk

_ Dt
= RF®)00 D+ 1)

X Wy (8/8)(1 |X> vany 8/5}_]|X, ey 0/8Xn‘x, a/axi|x)¢z+e, (u)

ui+1
= jrkd) z+ej(u). (57)

This calculation (57) uses formula (40) with « = g and f = 0 (since |u| =
rk ¢ — 1). Similarly one can use formula (40) to calculate the other components
of S and arrive at formula (50). m]
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