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In this paperwe prove the existenceof global shift operatorsS associatedwith any fiber
bundle m : E —~ M, and we discussthe useof theseoperatorsin the higherordercalculus
of variations.We usea recentformulation of the variational theory which combinesshift
operatorstogetherwith anotherfundamentaloperator,called theomegaoperator,to describe
themajoraspectsof thehigherordertheory: in particularthe Euleroperatorandthevarious
Cartanoperators.This approachprovides,we believe, a simple and direct treatmentof the
subject.
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1. Introduction

While manyof the problemsconnectedwith formulatingthe variationalthe-
ory for higherorderswere resolvedsomeyearsago, therehasbeencontinued
interestin sin~plifyingthe constructionsinvolved andunderstandingthe basic
mechanismsat work. In this vein we recentlyadvocated[Be911 an approach
which requiresjusta minimumnumberof fundamentalobjectsfor formulating
thetheory:basicallyjusttheomegaoperatorQ andshift operatorsS. Herein this
paperwe prove the existenceof global shift operatorsS, which werepreviously
introducedin a purelyaxiomaticfashion,andwe describeadditionalfeaturesof
our approachwhich follow easilyfrom the axiomsandwhich give someof the
well-knownresultsin the literature.

In essencethe omegaoperatorQ allows one to describethe Cartanforms
andwrite the variational equationsin termsof Cartan forms in a convenient
way. In conjunctionwith Q, the choiceof ashift operatorS givesanaxiomatic
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constructionof the Euler operator:E = ~ (which doesnot dependon the S

chosen)andthe variousCartanoperators:Cs (which in generaldo dependon
S, but only up to a trivial operator). Specifically for a kth order variational
problem,theseoperatorsare definedin termsof S by

S = (l+QdS)k, (1)

Cs = (1 + SQd)k, (2)

whered is the exterior derivative.The omegaoperatoris closely relatedto the
horizontalizationoperator,which hasbeenwidely usedin the literature,while
shift operators,in a certain sense,providea global mechanismfor integration
by parts, and by iteration yield the Euler operatoras in (1). The construc-
tions in (1), (2) rely on the useof certainvector-valuedforms on the various
jet spaces: : Ek JkE —* M of E, which are related to thoseusedby
Kolar [Ko84a,Ko84b] and FerrarisandFrancaviglia [FF84] (amongothers)

for similar purposes.In our case,we considerthe spaceof contact-horizontal
forms: C7~I~iE~~lc A1E1~~® ~ consistingof the contactone-formson
~ which are J~+l..horizonta1andwhich havevaluesin thebundleof ir~1-

horizontaln-formson ~ (heren = dim M). The diagramin fig. 1 illustrates
the overall constructionwith the domainsandcodomainsof 5, Q, 5, andC

5.
Clearly eachof the smallsquaresin thediagramis commutative,andthusone

has

SQd QdC5. (3)

Thisequationcanbetakenas the fundamentaldefining relationfor a kth order

Cartan operatorC in general:SQd = QdC,with C: AnEk AnE
2k.

Theseconstructionsnaturally expressthe intrinsic variationalaspectsof the
theory. Thus suppose)L is an n-form on Ek and let A;(a) = j~ak*,~be the
correspondingaction integral, wherea : M —~ E is a section (a E FE), and
ak : M —* E” its k-jet. Thenthe global variationalequations(Euler—Lagrange
equations)are

a2k+l*SQd,~= 0, (4)

or, in termsof the Cartanform C
5)L for )~,

a
2~l*QdC,~= 0. (5)

In certaincasestheseequationsreduceto onesof orderlessthan 2k + 1, since,
dependingon the natureof )L, bothSQd)~andCs)~may be pullbacksof forms
on lower orderjet bundles.(Theoperatorsdenotedby 1 in the diagramin fig.
1 are shorthandfor puilbacksby the variousprojections: ~ +1 ~ +1, and
the shift operatorvanisheson rankzero forms.)

The aboveis a brief outline of the approachto the variational theorydevel-
opedin ref. [Be91] (we provideadditionaldetails in section2).This technique
of constructingglobal Cartanforms via shift operatorsprovidesan alternative
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Qd
A~~E2k C7-E2~’

d I + QdS
A~E21~’ C7~I~~E2k

Qd
A~E~2 CW~E~3 5

1+SQd l+QdS

C7~(~iE~~+2

1 + QdS
A~~Ek C7~e1E~~

Fig. 1. The overall constructionwith the domainsand codomainsof S, Q, ~, and C~.

to other techniquesin the literature. Thesetechniquesinclude the use of (1)
partitionsof unity by Krupka [Kr84,Kr87], (2) connectionson thebasespace
by Kolar [Ko 84a,b] andAnderson[A89], (3) pairsof connectionsby Munoz
Masque[MM 85], (4) fiberedconnectionsby Ferraris [F84], (5) reductionto
first order by Saunders[S89], and (6) ideasfrom exteriordifferential systems
by Gotay [G9 1 a,G9lb]. Someofthe earlierwork on the resolutionof the higher
orderCartanform problem includesrefs. [FF83,GM83,HK83,Kr83] (see ref-
erencestherein for the prior history of this). We believeour approachhere is
simpler,more naturalanddirect, but in any regard,certainly derivativeof and
foundedupon theseearlierworks in the literature.
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In section3 we discussshift operatorsaxiomaticallyand in general,while in
section4 we specializeto what wecall basicshift operators.In the lattercaseit is

easyto showthat for orderk = 1, or for dim M = 1, the correspondingCartan
operatoris unique:C5 = C5, for any two basicshift operators5, 5’. In section
5 we show, in general,that a global (basic)shift operatorScan be constructed
usinga torsion-freeconnectionV on M (aswell as a volume form ~ on M).
Fordim M = 1 only the volume form is required,for k = 1 the shift operator

S doesnot dependon V, andfor k = 2 the correspondingCartanoperatorCs
doesnot dependon V.

2. Background and definitions

For the sakeof completenesswe include here some of the discussionand

definitionsfrom ref. [Be91].
Throughoutthe sequeln = dim M is the dimensionof the basespace,which

we assumeis orientedby a volumeform w. On a given coordinatechartwe let

(ta) denotethe local function on M given by

(w ) (x) = ~~(D/8x1~~,. . .

Thuslocallyct7 = (v)dx1dx2dx~.

2.1. CONTACT HORIZONTAL FORMS

In the sequelit will be convenientto phrasecertain constructionsin terms
of n-form-valuedone-formson jet bundles (cf. refs. [FF84,Ko84a,Ko84b], as
mentionedin the introduction). Thus let AlEk~® AnEk denotethe bun-

dle of one-formson Ek with values in the n-form bundleA~E
1, and let

CH~iE~’<+lc A1E1~’® A~E1~’be the subbundlewith elements~ u e
E~’ andcb~satisfying:

= 0, (6)

whenever(i) one of the Z~’sis
21k+l vertical (d7r

1~Z’= 0) or (ii) X~is

~ vertical, or (iii) X~= da~’I~Y~for somesectiona with a’~~’(x)=
u and Y~e TIM. Thus a section~ : Ek+1 CHnEk~of this subbundle,

E C7 Ek+1, is just a contactone-formwith valuesin the horizontaln-forms
and which also vanishes,c~~(X~)= 0, on ~+I..vertical vectorsX,~.In local
coordinates~ hasthe expression:

~= ~ (7)

wherew~ dy~— are the basic contactone-forms on E~’,A =

dx
1dx2 -dx~,and ~ ~(D/3y~)(8/t3xi,... ,0/f1x~).Our notation here
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(and throughout the sequel) is as follows: {x1}~1,{Y~}~T±’~’
mk+1denoteco-

ordinatefunctionson a fiberedchartof Ek+ 1 with m = the dimensionof the
fiber of E. Also a = (ai,...,cs~)E N~is a multi-index, H = ai + + a~,

and e
1 = (0,..., 1,...,0) is the multi-index with jth entry 1 andzeroselsewhere.

We also use implied summationon repeatedindices, with the one exception
thatsummationovera rangeof ordersof multi-indices,like in the above
expression,is explicitly indicated.

The rank rk(q~)of a contacthorizontal form ~ is the leastof all the integers
rE{0,l,...,k}forwhich95~(X~)= 0,VuandVX~~ V1~r~(them~’-vertical
vectors).Thus if~hasrank r, then locally ç~ ~ ®A.

2.2. THE OMEGA OPERATOR

The omegaoperatoris the operatorQ : A~~Ek ~ C7E~’ (onefor each
k = l,2,...),definedby

= Wz(d7V~~
1juXu,da~xd7t~HuZ,~,. . . ,da~d~I~Z), (8)

where u = [a]~’ and z = 7r~’ (u). Someof the propertiesof Q are: (1)
If X’ is a vector field on Ek+1 which projectsto X on Ek thenQ (~P)(X’) =

hor(XJ ~P),wherehor is the horizontalizationoperator(cf., e.g., ref. [Kr83],
p. 199) andI denotescontraction(theinterior operator). (2) Locally on ajet
chartQ(W) is given by

Q(W)= ~Q~(W)w~®4,

I~I=o

where

= Q(’P)(a/ay~)(o/ax
1,.. . ,9/fLv,2)

= hor(O/oy~.J~’)(a/Dx1,...,O/ax~)

are the components.
The omega operator demarcates the set of Cartanforms on Ek: these are the

n-forms C on Ek such that QdChas rank zero. (In the literaturetheseformsare
usually called Lepagean forms,as suggestedby Krupka [Kr73], dueto Lepage’s
work [Le361.) In particular, an n-form t on E” such that Qdr = 0 is called
a tn vial form. If ~ E A~iEk is an n-form, then a Cartanformfor )~is a Cartan
form C such that QdC = SQd)~.Thus the set of Cartan forms for 2 on Ek is
{C0 + t~r e kerQd} where C0 is any particular Cartan form for 2. For a Cartan
form C on E”, the variational equations (Euler—Lagrange equations) are simply
aI(+~*QdC= 0.
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Generallythe variationalproblemof interestbeginswith aLagrangianform
2 = Ltu on E’~,determinedby an appropriateLagrangianL : E” —* R. In this
casethe local expressionfor Qd2 is:

k

Qd2= ~(zz7)—w~,®A, (9)
H=0

andthe variationalequationsarelocally given by:

~ (—1 )1~(~)[(~)~ oa~ = 0 (a = 1,..., m). (10)
k~l=0

Thisisexpressedglobally by usingeithertheEuleroperator:a2k+ l*5Q d2 = 0, or
aCartanoperator:a2/~~l*QdC2= 0 (next section).The natureof the puilbacks
for thesevector-valuedforms is explainedin ref. [Be9l].

3. Shift operators in general

To definethe Euler operatorandvariousCartanoperatorswe usethenotion

of shift operators.

Definition. A shift operator is a mapping

S : CW~E~’ AnEk

(one for each k = 1,2,...), with the following property: for each~ ~ C7~mnEk~~

(l)ifrk~ = 0, then Sçb = 0;

(2)ifrkçb� l,thenrk(ç~+QdSq~)~rkç’—l.

In (2) weidentify, notationally,~‘ with its pullbackir~~ ~ ~, andwewill generally
write ~ + QdS~= (1 + QdS)~.TheassociatedEulerandCartanoperatorsare
definedby SS~= (1 + QdS)”q~andC

5). = (1 + SQd)”2. It has beenshown
[Be911 that the Euleroperatordoesnotdependon S (that is, E~= Ss,,for any
two shift operators5, S’), andthe the local expressionfor S is

s~=(~(_l)1~ID~Wa®A (11)

HereD~= D~”D~
2.. . D~,whereD

1 is a local differentialoperator

D, = + ~ +e

The existence of an operator S with property (11) does not really rely on the
existence of global shift operators(local shift opertorssuffice for the existence
proof, or othermethodsfrom the literaturecanbe used).
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TheCartanoperatorCs). = (1 + SQd ) k
2 is moreeasilycomputedby iteration:

let

= = Qd2,

= (1+QdS)~,

= (1 + QdS)q51,

= (l+QdS)c~k2.

Then

(12)

It should be noted that, depending on the rank of ~ = Qd)., the Euler and
Cartan forms: SQd). and C5). may reside on lower order jet bundles (i.e., be
puilbacks of forms on lower order jet bundles). Thus if ~ = Qd). has rank
r, then cbr = (1 + QdSYq~has rank 0 and so cbr+s = (1 + QdS)

5çbr = cbr
(moreprecisely = ~~5*i~r), for s = 1,2,...,k — r. ThusSQd2andCs). =

2 + 595 + + S95r_i arepullbacksof forms on Ek+1+r andEk+~.In addition
when). = Ltr~is aLagrangianform it is easyto seefrom (11) thatEQd2resides

on E2k (at most),and for the specialtypesof shift operatorsdiscussedin the

next section one has that Cs). resides on E2”~1(at most).

4. Basic shift operators

In this section we restrict attention to a special class of shift operators, called
basic shift operators,and their correspondingbasic Cartan operators. Before
doing this, however, we makethe following observationsaboutthegeneralcase.

(1) The set of shift operators is convex.
(2) Any two Cartanoperatorsdiffer by a trivial operator,i.e., if C

1, C2 satisfy
QdCI = SQd = QdC2, then C1 —C2 is a trivial operator (has values in kerQd).
In particular, for any two shift operators S, 5’:

Cs = C~’+ T,

where T is a trivial operator.
(3) If S is a shift operatorand T is a trivial operator (T : C7-I’

1E~’
kerQd, k = 1,2,...), then S + T is a shift operator,and CS+T). = C

5(2) +

T(95)+•.+ T(çbk_I).Hereçb=Qd).andçbr= (I +Qd5y95.
(4) If C is any Cartan form for). e A~~Ek,then C = Cs). for some shift

operator S. To see this let 5’ be any shift operator.Then t C — C5~).E A~E
21~

is a trivial form, and defining T(95) = r for 95 e C7~(FiE2kand T(qS) = 0
otherwise,givesa trivial operator.ThenCS’+T~) = Cs’). + r C.
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Definition. A shift operator is called basicif for every 95 ~ C7-t”E” + 1:

(a) S95 is one-contact (i.e., S95 is a contact n-form on E~1 such that
WI ZI S95 = 0 for any two ir~1-vertical vectorfields J4/, Z).

(b) S95 is m~’
1-horizontal.

On eachjet chart, a basicshift operatorS has the local expression, for 95 E

k—i

SçS= ~S~~(95)W~z1j, (13)
k~I=0

where
(—1)~dx1..dx~..dx~,

and the components of S are given by

= (_1)i+i(S95)(O/ay~,D1,...,D1,...,D~). (14)

The expression(13) is the generallocalexpressionfor 5, but for any particular
95, condition (b) gives that the summation in (13) need only extend to csl =

rk95— 1, since S,~,(95) = 0, for a~= rkçS,...,k—1. The Cartan operator Cs for
a basic shift operator has the local expression:

k—I k—i—k

C5). = 2 + ~ S,~j(
95r) ~ (15)

IaI=Q r=0

where as usual we put: 95,. = (1 + QdS)’qS,with 95 = Qd2.

For basic shift operators the condition that 95 + QdS95haverankatleastone
less than that of 95 is analyzedlocally as follows.

First for rkq5 = 1, one has S95 = S~~(95)w’~4~,and

qS+QdSqS=[95~Dsa(95)Iwa®A + [95?—S~
1(95)]w~®~1. (16)

For this to be rank 0, one musthave:5~2,.(95)= 95~,which shows that the action
on rank 1 forms, and thus on C7-1’~E’, is the samefor all basicshift operators.In
addition, for). e ARE’, the Cartan form is C5). =2 + S95 = 2 + 95~w°~41.

Next for rk 95 � 2, a short computation gives the local expression:

95+QdS95 = (95aDsa(95))wa®4

k—i /

+ ~ (\95~_ ~ ~ (17)

+ ~ (~_~ S~~(95))w~®A.

In the formula, the summations stand for the summation over all pairs

(jt,i)suchthat~i+e1= a. Also notethat, sinceS~~(95) = Owheneverlcvl� rk95,
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one can reduce the outer summationsin formula (17) to oneswith k replaced by
rk çS. Thus to satisfy the rank condition on shift operators one must have locally:

~ S~(95)=95~, (18)
~ + e, = a

for each a with Ia I = rk 95. There are a number of natural candidates for local shift
operators which satisfy condition (18), but the problem is to obtain a global one
satisfying the condition. In the next section we give a relatively straightforward
construction of a global basic shift operator S such that on each jet chart:

5~( _i~i~~ a 1
‘° rkq5

for LuI = rk95— 1 (and rkq5> 1).
For the case of rk qS = 2, condition (18) says that any basic shift operator

satisfies:

Se”i(95) + ~e’~j(95) = 95ea,+e, (i � J)~ (20)

5e~j(q5) = (21)

From this, and the action of S on rank ones, it is easy to see that for). e ME2,
the expression for C

5). =2 + SqS + SqS~is locally given by:

C5). = 2 + (95~— D1S~1(95)) waAt + S~,(95) w~41. (22)

For the shift operator we construct in the next section, which uses a connection
Von M, one sees from (19) that

= ô~~+1

when I <rk 95 < 2. Thus the corresponding second order basic Cartan operator
has local expression:

C5). = 2 + (~— 1 DJ95~+e) wa4 (23)

+ rkqS 1 95~+e,w~A1.

Thus Cs). does not depend on the connection V used in defining S. This result
together with the assertions in the following theorem have occurred often in the
literature in various forms and have been derived by different methods (cf., e.g.,
refs. [F84,GM83,G9la,Ko84a,Kr83,MM85,589]). By our method, the results
in theorem 1 are derived by just using local shift operators.
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Theorem 1.
(l)Suppose).eA’~E”~1is anyn-formandC~ A?IE2k isa Cartanfonmfor).

suchthat C—). is one-contactand~t~”
1-honizontal(i.e. C is a basicCartanform

for 2). Thenon eachchart the local expressionfor C is:

k—i k—i—jc~t

C = ). + ~ M/~iD~95~+~+e+ t~ w~A1. (24)
al=0 [P1=0

Here 95 = Qd)., and theconstantsM~,are:

MI?. — (—1)~aI!IflI!(a + /3 + e1)! (25)
— a!/3!(Ic~+ II~I+ 1)!’

while thet~,•‘s are thecomponentsofa trivial formon E2k.

(2) For basedimensionn = 1, orfor order k = 1, any trivia/form on E
2k,

which is one-contactand ir~
1-honizontal,is identically zero. Consequentlyin

eitherofthesecasesthereis at mostonebasicCartanform Cfor each2, and in
additionCs = C5 foranytwobasicshift operators5,5’. For n = 1 theexpression
(24) reducesto:

k—i 1k—i—a

C =2+ ~ ~ (26)
a=0 /1=0

Proof
(1) To get the local expression (24) for Con a chart, define a /ocalbasic shift

operator S on this chart by:

= 95~+ei°~i (27)

The computation of C5—). is particularly easy since S has the property that

~~+e,=a5~i(95) = 95~,for every a ~ 0. Thus formula (17) simplifies to:

= 95 + QdS95
k—i

= (ç
5a - D

1S~~(~)~~a ® ~ - ~ D,S~(95)w~® 4 (28)

= (95a_Dt95~)wa®4 - ~

Ial=i

From this one obtains:

S
95i = ~‘(lI

2)DI95a+ei+eiW~Ai. (29)
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Continuing with this iterative calculation: 952 =
95i + QdS95i, S95

2, ... , one
arrives at the locally definedCartan form constructed from 5:

k—i k—i—laI

C~—2= 2 + ~ M’~
1

1D’
tcb°~~fl~,. ~ (30)

aI=O 1/11=0

Nowsince any two Cartan forms for). (local or global) differ by a trivial form,
one has in particular:

C=C~2+r, (31)

where r is a local trivial form on E21’. Since both C and C
5). are basic, r necessarily

has the expression: T = ~ ~ Thus formula (31) is the same as (24).

(2) Suppose r E APIE
2k is one-contact and m~i-horizontal. Locally t =

~ T~w~A
1,and is trivial (Qdt = 0) if and only if

D1’r~1= 0,

D1r~1+ = 0 (0 < al < k), (32)
p+eI=a

~ ~i=0

p +e~=a

Thus for n 1, or for k = 1, any such trivial form is identically zero. But
then from formula (24), one sees that any two basic Cartan forms C, C’ for 2

coincidelocally with C1~2,and thus C = C’.

Definition. The local shift operator Sdefinedby formula (27) in theaboveproof
is called the canonical local shift operator. This operator is purely local (does
not globalize in general), but is useful in computingthe local expression(24)
for any basic Cartan form for 2.

There are other candidates for local shift operators for which Cs). is easily
computed, for instance:

= ~ N(a+ e’) 95~+ei~°~
4i, (33)

where N(/3) denotes the number of non-zerocomponentsof /3. However, the
use of S gives formula (24), which coincides with the formula given by Munoz
Masque [MM85] [when specialized to the Lagrangian case:). = L~,so that

= (~)DL/Oy~]. Other versions of Cartan forms from the literature can be
obtained in a similiar fashion (the differences lying in the trivial form ‘r). One
anomaly occurs here. For the global shift operatorS we construct in the next
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section, the local computation of C5). is exceedinglydifficult (evenfor n = 1),
and so it is perhaps best to be satisfied with knowing:

CsA=C5—2+r, (34)

in terms of the canonical local shift operator S and some local trivial form r
[which vanishesfor n = 1 (and k = 1)].

5. Existence of global shift operators

In this section we prove the existence of global shift operators for any fiber
bundle it : E —~ M, by constructing a specific one which is basic and which
satisfies condition (19) on each jet chart. The construction involves an operator
B(95,g) which is similar to the Saunders operator S~(cf. ref. [S89], p. 235).
Wedo not use his operator here, but rather proceed along a slightly different
route.

Thus let y be the canonical contact structure on E~
1,i.e., for a vector field

Z on E”~, y(Z) is the m~1-vertical vector field along ir~~defined by (cf.
ref. [S89], p. 215):

= dmiluZu_da~i~Ixditk+iIuZu, (35)

whereu = [a]~ and x = m”~(u). Thus locally onehas:

= ~ w~(Z)~a/3y~, (36)
Ial=0

wherez= m~~(u).
As before, let ~ be a volume form on M, and identify ~ with is pullback

~ For ann-form 0~E AnE~i, let

*0 — ___________________U —

Here xi, ..., x~are coordinate functions on M (lifted toEk+i ), and the definition
does not depend on the choice of coordinates.

Theorem 2.Suppose95 E CR~E1’~’and g E COCM. Let B(95,g) denotethecon-
tactone-formon E”~~definedby. for u E E”~andZ~E TUE~

B(95,g)~(Z~)= *95k ((~y)k+i)

whereY is a vertical vectorfield on E suchthat

= yk+1 (38)

(here yk~ denotestheprolongationof Y to Ek~ ), and ,~ = g — g(x), with
x = ir’~ (u) (weidentify g with its pullbackto E).
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The definition ofB(çb,g) in (37) doesnot dependon the Y chosento satisfy
(38). Furthermoreon anyjet chart onehas the local expression:

k—i

B(95,g)= ~B~(95,g)w~, (39)
aI=0

where

k-i-FaI (a+fl+ei)
B~(95,g)= fl[=0 N(fl+e1) ~ [(a/ax)fl+e1g]95~~p~~,. (40)

Here(~)= a!/[v! (a — v)!] andN(a) = the numberofnon-zerocomponentsof
a = (ai, ..., an). Notealsothat in (40) thereis impliedsummationon i = 1,..., n,
andin (39) and (40) onecan replacek by rkq5.

Proof First, it is clear that for a given point u e Ek1~,there is a vertical vector
field V on E such that yk+i = y(Z)~. To see this, note that on a given chart
about u, the requirement is: ~aya = w~(Z)~,for a = 1,..., m (where D~=

D~”D~
2. . . D~).On the chart one can construct such a V which is constant on

the fibers [so that DaY~l= (3/Dx)aYa], and then extend this to all of E.
Next, in order to see that the definition (37) does not depend on the V so

chosen, look at the local expression for (,~y)k+ on a chart about u, and use
Leibnitz’s rule to get:

k+1

(~y)k+i = [~DP(~Va)~_~]

I~I=O y~ ~

k+i k+i—Ial
= ~ (a+v)DUDaYa a j (41)

laI=0 ~‘I=0 Ya+v u

(a + /3 + e,’\
k k—Iaj ) ~ /3-i-c, a

= aI=0(I~=0 N(fl+ e
1) (~)~~)w~Zu ay~~p~e,L

The above expression (41) shows that (~Y)~~does not depend on the choice
of Y. Furthermore by evaluating q

5u( (~Y ) ~ + ), using expression (41) and the
fact that 95a+fl+e, = 0, for al + /3j = k, one arrives at the local coordinate
expression (39), (40) for B(qS,g).

Remark.The SaundersoperatorS~(cf. ref. [S89], p. 235) is essentially given
by the expressionin eq. (41).

The theoremshowsthat B (95, g ) ~(ZU) only dependson the k-jet gk (x) of
g atx = it”~ (u) (whereg is consideredas a sectiong : M —~ M x R.) To
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construct a shift operator out of this, it is natural to look at somethingof the
form:

(42)where ~ ~, gZ~Z~’E C~Mis a multilinearselection of a func-
tion on M. It is not clearwhetherthereis anaturalmultilinear selectionto use,
or whethersuch a selectionyields a smoothtensorfield on Ek+ I definedvia
eq. (42). In addition to achieveashift operatorout of sucha constructionthe
al = rk 95— 1 components of B (95, g) shouldhavea specificform. Thefollowing
theoremshowsoneway to constructS95 out of B(95, g), somewhatalongthese
lines.

Theorem3. Thereexistsa global basic shift operator, constructedasfollows: Let
n = dimM.

(1)Forn = 1, defineSq5by:

(Sq5)~(Z~) = -~B(95,g)~(Z~), (43)

whereu E ~ 4 E T~Ek~,and g is afunctionon M, which on a neighbor-
hood ofx = mk+1(u) satisfies:

dg = tcr. (44)

Thedefinition doesnot dependon thechoiceofg, andthecomponentsofSqSare
smoothfunctionson Ei:

(a + /3 + 1
k—i—a

5a(95) = 95 + r~ ~ (45)

for a = 0, 1, ..., k — 1, andbyconventionthe summation is absentwhen
a = k — 1. In formula (45)

C~+i(~) ~(d/dx)~(~) (~)(x)~wx(d/dxIx).

(2) For n � 2, defineSq5asfollows. Let V be a torsion-free connection on M.
For a multilinearform 0 on a vectorspace,let *0 denotethe symmetrizationof
0. For u E E’~+’and ZJ, ...,Z,~eTUE~~i-~,chooseafunction

g = gZJ•~~Z~~l

on M which satisfies:

= (l)~1(Z~’I IZ~I~), (46)

= 0, (47)
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forp = l,...,k. HereZ~/= dir”~l~Zj~ andV~= VoVo...oV denotes the
application of the covariant derivative p times. Then

B(95,g~~)~(Z) (48)

does not depend on the choice of g satisfying eqs.(46), (47), and the antisym-

metrization of this expression gives a basic shift operator:

= ~ ~B(95,g~’~°)(Z~), (49)

with local expressionon eachjet chart given by S95 = ~ S~1(95)w~41.The
componentsofthis basicshift operator are:

k-i-JaI (a+fl+et)
= + [flI=0 rk95 N(fl + e1) C~+e,(W~V)95~+fl+e,, (50)

for al = 0, ..., k — 1, andbyconventionthesummation~~HaI is absentwhen

al = k — 1. These components are smooth functions on Ek~with C,~~+e~ V)
dependingon ~ andthederivativesoftheconnectioncomponentsin general.

Proof
(1)This part follows from theorem2.
(2) First note that for a given u E E”~, and ~ eqs. (46), (47)

constitute an intrinsic way of specifying the k-jet of ,~ = g — g (x) at x. Thus
any two functionsg, ,~ which satisfy theseequationsgive the sameB operator:
B(95,g)~= B(95,~)~at u. Further, the multilinear dependenceon
of any solution is clear from the form of the equations. Thus it suffices to look
at these equations locally andexhibit a local solution.Equation (46) is

ag/ax1l~= (1)n_x(Z~,...,Z~_i,a/axilx) (51)

and eqs. (47) for p = 1 k, recursively specify the higher order derivatives of
gat x in termsofa g (x ) /9x,. and the derivatives of the connection components.
Namely, by looking at

______ a
g r g

v ~ — —

ax1ax~ ax,.

~V
2d — a ( a2ggiijc — ~~ax~ax~ —

_~(a~2xs 1~~)_~(a~i2xs 17~)~ (53)
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etc., one sees that g satisfies eqs. (47) if and only if

as a2g — ~ as (prag (54)
ax~

1...ax,.~ax1ax1— ax~1~ax~,~ii~-:~ -~

= pr(p)ag/ax,.~~ (55)

for each s = 1, 2, ..., k — 1. Here the * indicates symmetrization of the indices
Ci, ...,c~,i,j, and P’(F) is a certain polynomialdependingon F and its deriva-
tivesup to orders.Thispolynomial resultsfrom eq. (54) by applyingLeibnitz’
rule thereandrecursionto eliminateall but the first orderderivativesof g.

All of this shows that the expression

B(95,g~z:’)~(Zn) (56)

does not depend on the choiceof g, and is multilinear in ZJ, ..., Z~(with actual
dependence only on the projections of these to TIM).

The antisymmetrizationof (56) (divided by rk95), gives an n-form S95 on
+ which is clearly one-contact and it~+ i..horizontal To see that it is a shift

operator we compute S,~~(95) for ~ul= rk95 — 1:

S~~(95)~= ~

= (~1 )J+ ‘B (95 gDt SD ~ )~(a/ay~l~)/rk95

= (1)J+i~ g l~95+ (u)/rk95

(1)fl_i (_l)J+i ~

= rk95(~)(x) (~,+l)

x ~ (a/axilx,...,aIaxilx,...,a/axnlx,a/axi•lx)95~+c.(u)

= ~
This calculation (57) usesformula (40) with a = ,u and /3 = 0 (since l,ul =

rk95 — 1). Similarly one can use formula (40) to calculate the other components
of S and arrive at formula (50).
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